Newsflash

[MEGAFRAME] 2010: MEGAFRAME was successfully completed (see also MEGAFRAME Final Report , MEGAFRAME D6.4 Laboratory fluorescence microscopy demonstrator ), but work using the MEGAFRAME32 (32x32) and MEGAFRAME128 (128x160) devices has continued, as you can also see from the Publications section.


MEGAFRAME32 is being distributed by Photon Force Ltd (contact: This e-mail address is being protected from spam bots, you need JavaScript enabled to view it ).


In parallel, the follow-up FP7 ICT SPADnet project (www.spadnet.eu ) has been launched, dedicated to the use of SPAD arrays in medical imaging, most notably Positron Emission Tomography (PET), building on the MEGAFRAME scientific and technological achievements.

 

[MEGAFRAME] April 2010: MEGAFRAME was selected as one of "12 outstanding Commission-funded FET projects" showcased at the European Parliament in Strasbourg within the Science beyond Fiction exhibition, 20-21 April 2010, organised to introduce Members of the European Parliament to Future and Emerging Technologies (FET). E. Charbon [and J. Arlt] attended and presented a 3 part poster (poster 1 - poster 2 - poster 3). 

 

[MEGAFRAME] Oct. 2009: MEGAFRAME reports on the performance of an array of 32x32 plano-convex 50μm pitch microlenses (see LEOS 2009), fabricated by co-polymer casting in a photoresist replica mold, which have been characterized by a specially developed Optical Test Bench. The measured detection sensitivity increase reaches up to a factor of 35. This concentration factor is, to the best of our knowledge, presently the highest reported to date for any array of SPADs.

 

[MEGAFRAME] Sept. 2009: S. Donati, UNIPV, has been invited to present a talk at the 17th International Conference on Advanced Laser Technologies (ALT09), 26 Sept - 1 Oct 2009, Antalya, Turkey, and selected the MEGAFRAME project as a topic.

 

[MEGAFRAME] June-Sept. 2009: MEGAFRAME reports on the design and characterisation of 32x32 TDC/TAC plus single photon avalanche diode (SPAD) pixel arrays implemented in a 130nm imaging process, to create a single chip TCSPC sensor (see the IISW, CICC and ESSDERC Publications). To the best of our knowledge, this work constitutes the largest single-chip array of fully integrated TDCs/TACs so far reported. Each TDC/TAC-SPAD ensemble measures only 50x50μm2. It is thus one of the smallest ever demonstrated with deep sub-nanosecond time resolution.

 

[European R&D] July 2009: The European Commission has explicitly included single-photon and smart pixel based time-correlated imaging R&D into the ICT Call 5 Photonics 2009 topics (see EC Photonics unit website). This is fully in line with MEGAFRAME’s pioneering results, which proved that single photon arrays can indeed be implemented in deep sub-micron CMOS for time-correlated as well as intensity applications.

 

[MEGAFRAME] July 2009: MEGAFRAME reports on the a new low noise single-photon avalanche diode (SPAD) fabricated in a 130 nm CMOS imaging process (SSE 2009). To the best of our knowledge, the DCR (Dark Count Rate) per unit area achieved in these devices is the lowest ever reported in deep sub-micron CMOS SPADs.

 

[MEGAFRAME] May 2009: MEGAFRAME reports on the real-time hardware (FPGA) implementation of a new integration based FLIM lifetime calculation algorithm, called IEM, suitable for SPAD arrays (see ISCAS 2009). This approach enables direct lifetime calculation in parallel for every pixel. To the best of our knowledge, this is the first system that can generate real-time video-rate fluorescence lifetime images.

 

[MEGAFRAME] April 2009: MEGAFRAME was selected as one of the exhibits of the FET09 Science beyond Fiction conference, 21-23 April 2009, Prague. E. Charbon and R. Henderson attended and presented a 3 part poster (poster 1 - poster 2 - poster 3).

 

[MEGAFRAME] Jan. 2009: Dr. Robert Henderson, UNIED, has been invited to present a talk at the Rank Prize mini-symposium on Single-Photon Detectors, 12-15 Jan 2009, Grasmere, Lake District, UK.

 

[MEGAFRAME] May 2008: MEGAFRAME reports on the direct integration for lifetime extraction method (IEM), a new, simple, and hardware-only fluorescence-lifetime-imaging microscopy (FLIM) proposed to implement on-chip lifetime extractions (JOSA A 2008).

 
"130nm CMOS SPAD", invited presentation at SPIE Optics East (Sept. 2007)
 

July/Aug. 2007: MEGAFRAME reports on the first implementation of a Single Photon Avalanche Diode (SPAD) in 130 nm complementary metal–oxide–semiconductor (CMOS) technology - see also the JSTQE paper in the "Publications" section.

 

FBK/ITC press release, Oct. 2006 (original Italian version, English version).


RELATED NEWS

 
Home arrow Abstract
Abstract PDF Print

Imaging of ultra-fast, time-correlated, molecular processes in physics and the life-sciences is placing increased demands on camera technology. A new detection paradigm is necessary whereby a solid-state sensor array of pixels sensitive to a single photon is assembled. Pixels composed of detectors called Single Photon Avalanche Diodes (SPADs) will be integrated for the first time in an advanced, deep-submicron CMOS process. Large arrays of SPADs interfacing to networks of parallel digital processing units on the same chip will provide record levels of timing accuracy, sensitivity and speed.

The MEGAFRAME 128x128 pixel prototype will be capable of a sustained 1,000,000 frames per second with 50 picosec time uncertainty. This will re-establish European excellence in the field of ultra-high speed video capture. To access and process the extremely high data rates generated by the pixel array, novel system architectures must be developed. Another essential advance is a highly reproducible optical concentrator array to reclaim the fill-factor lost to pixel-level infrastructure.

The new imaging system will be evaluated using emerging time-correlated methods such as Fluorescence Lifetime Imaging Microscopy and Correlation Spectroscopy, Förster Resonance Energy Transfer, and Voltage-Sensitive Dye imaging. Resolutions and frame rates at least ten times higher than today's solutions will be achieved. Mechanisms such as calcium signalling will be monitored on single cells at 1microsec steps for the first time. Future advances in proteomics, systems biology and drug discovery are dependent on such improved understanding of intra-cellular processes.

Major contributions to multi-processing architecture, flow-control engineering and fast phenomena observation are also expected. The consortium is a unique combination of imaging technology innovators, a leading European semiconductor manufacturer and a diverse end-user community from the life-sciences, physics and chemistry.


Project Details
Project Acronym: MEGAFRAME
Project Reference:029217
Start Date:2006-06-01
Duration:44 months
Project Cost:2.46 million euro
Contract Type:Specific Targeted Research Project
End Date:2010-01-31
Project Status:Execution
Project Funding:1.85 million euro
 
© 2016 MEGAFRAME - Million Frame Per Second, Time-Correlated Single Photon Camera [IST FP6 FET Open]
Joomla! is Free Software released under the GNU/GPL License.